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AbslmeL We mnducted a mmparative study of the density distribulion of metastable 
slates in analogue neural networks and the Bollzmann machine by evaluating number 
densities of the attractors of the networks as funclions of aorage capacity, analogue gain 
or lemperalure and pattern overlap. Ihe analysis is based an the fact that the Bollzmann 
machine and the analogue neural network a n  be described by the 'l%oulesg-Andemn- 
Palmer qualions with and without the Onsager reaction lerm, respedively. We found 
the remarkable resull that the spurious-slate density around spin glass equilibrium stales 
is much,larger far the Bolumann machine than for the analogue neural network for a 
reasonably wide range of analogue gain or temperature, wllich leads lo an rxpglalion 
that the analogue neural network should p e s  a much better potenlial for memoty 
relrieval than lhe Boltzmann machine. 

1. Intmduction 

The theory of content addressable memory based on binary neurons with symmetric 
synaptic couplings has been extensively developed within the context of statistical me- 
chanics of spin glasses. Several problems exist, however, in the process of memory 
retrieva! for neura! networks consisting of discrete formal neurons including the exis- 
tence of spurious states which is a severe obstacle to memory retrieval. Most of the 
methods which have been proposed to reduce the number of spurious states can be 
classified into two categories. The first category involves the we of analogue-valued 
neurons (Hopfield 1984, Hopfield and 'knk 1985) in place of the discrete-valued 
formal ones and the second the introduction of stochastic updating to the network 
dynamics (Geman and Geman 1984, Ackey el af 1985). Using analogue neurons 
smooths the landscape of the energy function and decreases the density of the spu- 
rious states whereas introducing stochastic fluctuations allows the network states to 
escape from the local minima of the spurious states. It is, therefore, of interest to 
conduct a quantitative analysis to see whether these models are superior to those of 
discrete formal neurons with deterministic updating, which shows better performance 
and to what extent they share common properties. We have partially answered these 
questions by performing thermodynamic calculations to obtain the retrieval phase 
boundaries, ie. the critical storage capacity (Shimo and Fukai lW), as well as by 
estimating the number density of spurious states in the analogue neural nehuorks 
(Fukai and Shiino 1990). The results we have obtained so far can be summarized 
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as follows (Fukai and Shiino 1990, Shiino and Fukai 1990, M u g h  ei al 1990, 1991, 
Kilhn el aJ 1991): 

(i) The manner in which the storage capacity of the analogue neural network 
with a sigmoid-type response function decreases with decreasing analogue gain is 
qualitatively the same as that for stochastic king-spin neural networks with decreasing 
stochastic noise. (Amit d a1 1985; hereafter referred to as the AGS theory.) In 
what fo~~ows, we call the stochastic king-spin neural network the Boltzmann machine 
(Ackey ef aJ 1985). 

(ii) The analogue neural network at a finite analogue gain exhibits a slightly larger 
aitical storage capacity than that of the Boltzmann machine with the comesoponding 
temperature. 

(iu) There exist, in general, three kinds of metastable state with exponentially 
large densities in the analogue neural networks: the f i s t  is a concentrated distri- 
bution around the embedded patterns; the second one occurs around the spin glass 
states; and the third one around unstable states, which does not manifest itself in 
the deterministic Ising-spin neural networks (Gardner 1986), i.e. an analogue neural 
network with an infinite analogue gain. 

(iv) Decreasing the analogue gain dramatically suppresses the number of spurious 
states in comparison with the deterministic Ising-spin neural network. This implies 
that the use of an analogue neural network with an appropriately reduced analogue 
gain would considerably improve the network performance in return for a slight 
decrease in the storage capacity. 

In the present paper, we would like to complete our co’mparative studies of 
the performances of the  analogue neural network and the Boltzmann machine by 
comparing the densities of the metastable states of the two types of network model. 
Our analysis reveals that the metastable state density of the analogue network is 
much smaller than that of the Boltzmann machine over a reasonably wide range of 
parameter space. 

We make full use of the concept of Thouless-Anderson-Palmer (TAP) equations 
by which both types of network can be related to each other. In the framework of the 
statistical mechanics of spin systems, the equilibrium states in the Boltzmann machine 
at a given temperature (stochastic noise) are characterized by a set of equations 
for the averaged spins (formal neurons) called the TAP equations with the so-called 
Onsager reaction term. The analogy between analogue networks with a sigmoid 
response and the Boltzmann machine is established by the fact that the equation 
obtained by discarding the Onsager term in the TAP equation coincides with the fixed- 
point condition for the analogue neural networks. In other words, analogue neural 
networks correspond to ‘naive’ mean-field models of Ising-spin neural networks. This 

counting the number of solutions to the  TAP equation as in the case of the analogue 
neural networks where the number of solutions for the fixed-point condition was 
calculated analytically by use of the saddle-point method (Bray and Moore 1980, 
Gardner 1986, hkai  and Shiino, 1990, %ugh el al 1990, 1991). 

The paper is organized as follows. In section 2, we present an analogue neural 
network with a sigmoid response function and a Boltzmann machine and then show 
that the two models can be discussed in a unified manner in terms of the come- 
sponding w equations. In section 3, we analytically calculate the densities of the 
metastable states of both neural networks in the limit N + CO. The resultant ex- 
pressions for the metastable stare densities are numerically evaluated in section 4 in 
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order to make a comparative study of the two neural networks. Section 5 is devoted 
to discussion and mncluding remarks. 

2. Neural network model 

21. Nonlinear analogue neural network 

Let {ui] (-M < ui < m, i = 1,. . . , N) be a set of real variables which represent 
the membrane potentials of neurons having graded responses zi = f(ui); the time 
evolution of the state U ;  of analogue neuron i is described by 

where Jij  k a synaptic coupling from neuron j to i. When, as will be assumed later, 
the synaptic coupling is symmetric and the response function f is monotonically 
increasing, the state of the network evolves so as to minimize the energy function 
(Hopfield 1984) 

E ,  = -1 J i j  z i z j  + /'' d r  f - ' ( z ) .  
2 i  j I -1  

Tb establish a formal analogy between the analogue neural network and the Boltz- 
mann machine of Ising spins, we choose 

f(u) = t a n h ( 0 u )  (3) 

as the response function of analogue neurons with analogue gain p. 

22. The Bolnmann machine 

State {Si) of the neural network is usually.assumed to be represented by a set of spin 
variables (formal neurons) taking either +1  or -1. The Boltzmann machine is defined 
by stochastic dynamics obeying the following master equation for the probability 
distribution P ( { S } , t )  of the states of neurons: 

a p ( { s } * t )  = C w ( - S ,  - s i )P({S ' ] , t ) -~w(Si - -S i )P({S) , t )  (4) 
i at 

where {S') is the state obtained from { S )  by reversing the state of neuron i and the 
transition rate at the inverse temperature 0 is given by 

w(Si  - - S i )  = f(1 - t anh(@Sihi ) )  

h ; ( t )  = C J i j S j ( t )  
j # i  
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Here hi is the local field for neuron i and P is the measure of external noise. Since 
for t + mP({S) , t )  approaches the equilibrium distribution which is proportional 
to e - P E n  (the Boltzmann distribution) with the energy function 

T Fukni and M Shiino 

I 
E 8 = - - c J i j S i S j  

i + j  

this model is called the Boltzmann machine. 

tional Hebb rule 
In the present paper, we assume the synaptic coupling to be given by the conven- 

where p I a N  random patterns {&')) ( j i  = 1,. . . , p )  are embedded with .$') 

taking either +1 or -1. 

23. zilp equations 

These two seemingly different types of neural networks can be dealt with in a unified 
manner in terms of the TAP equations. We first note that the fixed-point condition 
d u i / d t  = 0 for the analogue networks is nothing other than the w equation 
without the Onsager reaction term for the naive mean-field model of stochastic Ising- 
spin networks, on which the replica symmetric calculation to determine the storage 
capacity of the analogue networks was based (Shiino and Fukai 1990). The Onsager 
reaction term for the Boltzmann machine can be obtained by evaluating the bee 
energy either by a diagramatical technique similar to that developed for the spin 
glass model pl~ouless el a1 1977) or by the cavity method. The resultant expression 
for the free energy is different from equation (2), as has been previously mentioned, 
by an amount arising from the Onsager reaction term. The following expression for 
E covers the energy (or the free energy) functions both for the analogue network 
with the sigmoid response function given by equation (3) (y = 0, E = E A )  and for 
the Boltmann machine (y = 1) (Mezard el al 1987): 

Here zi stands for the averaged spin (S i )  for the Boltzmann machine. The last 
term in (8) yields the Onsager reaction term for the Boltzmann machine with the 
coupling given by equation (7). The metastable states of the networks are given by 
BEIBzi = 0: 

i = 1 ,  ..., N (9) 
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which is equivalent to the fixed-point condition d u i / d t  = 0 for the analogue neural 
network (7 = 0) and is the TAP equation for the Boltzmann machine (y = 1) with 
the last term representing the so-called Onsager reaction term. In fact, based on 
this TAP equation, we could obtain the same equations for determining the storage 
capacity of the Boltzmann machine as in the AGS theory by applying the recently 
developed self-consistent signal-to-noise analysis (Shiino and Fukai 1991). 

3. Densities of the metastable states 

We proceed to evaluate the density of the metastable stat- { z i )  which is given 
by the stationaystate condition a E / a z i  = 0 together with stability condition 
de t ( a2E/8z iaz , )  > 0. Such a density rims for the metastable states having an 
overlap m with an embedded pattern {tir)} is given by 

(10) 

where the bracket ((. . .)) denotes averaging over the random patterns. It k well known 
(Bray and Moore 1980, Gardner 1986) that n,, takes the exponential form in the 
limit N -+ 03, Le. 

which implies that "3dStable states exist only for parameter values satisfying 
G ( m , a , p , r )  > 0. In the evaluation of equation (lo), we will restrict the inte- 
gration range for zi to the region R c (-1, where d e t ( a z E / 8 z i 8 z j )  > 0 to 
ensure the (necessaiy) stability condition for the local minima of the (free) energy 
function E. 

The calculation of equation (10) for the Boltzmann machine (or for non-zero y) 
parallels that for the analogue network (y = 0). For the sake of clarity, we start 
from the expression in which averaging Over the random embedded patterns is taken 
separately for the determinant factor and for the residual part of the right-hand side 
of equation (lo), although we could proceed without assuming this separation as in 
the analogue nehvork case and recover the same expression as derived later from 
equation (12) in the leading order of N .  

It is noted that this factorization may not be justified in the next leading order of N 
since the distribution of the two factors in equation (12) might significantly overlap 
in this order. 
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Noting 

(13) 
we fvst evaluate the determinant part in equation (12). The last term in equation (13), 
which is of 0 ( 1 / N )  and hence is easily seen to yield a negligible contribution to the 
determinant in the limit when N goes to inlinity, can be omitted in the calculation. 
Introducing two sets of anticommuting variables { q i ,  q:) and {e,, e;), we can rewrite 
the determinant factor as follows: 

After averaging this expression over {[r) ( p  # r) and a short manipulation, we 
obtain 

Introducing a parameter n = ( l / N )  Ci qfqi  with a mnstraint wriable 6, this 
expression can be written as 
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In equation (17) the integrations Over anticommuting variables can be easily per- 
formed to yield 

We cany out the n integration by the saddle-point method and obtain the final 
expression for the determinant: 

((det%))=[- - e x p [ N ( d - o + a l n : + - C l n L i  d+z a 1  
ariati -im 2 z i / N  n N i  

We note that in view of counting the stable fixed points which are ensured by the 
positive definiteness of matrix @E/az,EIz,, the condition L i  > 0 ( V i )  should be 
imposed to obtain the restricted integration range Cl. 

The remaining part of equation (12) can be evaluated in a similar manner m that 
adopted in the analogue neural network me. Using the integral representation of 
the delta functions, we rewrite that part as 

We .Ip.ncp!e the prdulu~ts i ~ ~ ! v i n g  the EXK!G~ m e m q  p ~ r n r  h the Pmnnent nf -- 
the integrand by means of the Gaussian integration formula with variables q,, and 
A,, and then take the avarage over the random patterns: 
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Noting that z iq ,  + ( 1 / N ) z i A ,  - O ( l / f l ) ,  we expand this equation up to 
0 ( 1 / N )  and then perform the resultant Gaussian integration over q, and A, to 
obtain 

Introducing parameters 

with the corresponding constraint variables a ,  b and c, respectively, and carrying out 
the Gaussian integration of zi. we get the following expression for the left-hand side 
of equation (23). 

d A d B d C e x p  
dadbdcdu 1 " i  n d z i  lI ( 2 ~ i / N ) ~  /, 

N 
2 

- - o l n ( A B +  (1  + C)')+ N a A  + N b B +  N c C -  N ln(2&)] .  

(25) 
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Ihe integrations of variables B and C can be evaluated by the steepest descent 
method since the saddle-point equations for these variables become algebraic: 

a A - b -  - 1 aG 
N aB 2 A B + ( l + C ) Z  = O  
-_ - 

1 aG 1+c 
N a c - " - "  A B + ( l + C ) z  ='' 
-_ - 

Note, however, that the saddle-point equation for the  Edwards-Anderson-like param- 
eter A Q not algebraic unlike the analogue network case due to the existence of the 
Onsager term. 

Combining this with the determinant factor (20), the result becomes 

1 
N -1n n,,(m3 a , A y )  = C ( m , a , p , ~ )  

a a a - 1  = In F +  n - a l n  li+ -111 - + - 2 A  2 

1 y a  + ( l - y ) a - l i  
n( 2) = p ( l - z z ) +  l - P + p A  

where w c (-1,l) represents the restricted integration range implied by the positivity 
of the determinant factor n ( z )  > 0. Note that this representation is free of a 
detailed specification of the referenced pattern (!r) which was eliminated by scaling 
the integration variable .fjr)zj + 2;. The six integration parameters a,  b, c ,  w ,  A and 
A should be determined by the saddle-point equations aG/aa = aC/ab = . . . = 
aG/aA = 0 .  

4. XiiiiiSka: aii6:ySiS 

The saddle-point equations for the parameters Q ,  b, c, U ,  A and A were numerically 
solved and comparative studies of the metastable state distributions for the Boltzmam 
machine (y = 1) and analogue neural network (y = 0) were conducted. We obtained 
results showing remarkable differences between the WO models in certain ranges of 
the parameters Q and p. In general there exist three kinds of metastable state, each 
of which Q characterized by the values of the pattern overlap m yielding G > 0 
(figure 1). The k t  group comprises metastable states distributed around spin glass 
type thermal equilibrium states with vanishing pattern overlaps (m 0) or with 
no correlation with the embedded patterns. The second group (the retrieval states) 
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G la) 
I 

IO4 t 
m 

G (61 

iction of the pallem overlap m for the mi :ue neural 
network (a) and ihe Bolumann machine (b). 'Ihc parameten uscd am a = 0.09 and 
B =  3. n e  heighls of the sharp pcaks which n a m i y  louch the horizontal axis in Be 
figures are of 0(10-'). In the Bolumann machine, we o h m  the aiatcnee d a large 
population of the metastable slates amund lhc spin alas states (m = 0) which arc the 
ObStacles for memoty relrieval. 

appears in the neighbourhood of the embedded memory patterns with m being 
almost unity. The third group, which corresponds to unstable states appearing in 
thermodynamic calculations (Shuno and Fukai lW), is locared between the other 
two groups of metastable states. These three peaks are separated from each other by 
intervals giving negative G. 

Figure 1 shows a clear difference in the profiles of the metastable state distribu- 
tions for the two models under consideration: the peak corresponding to the spin 
glass metastable states of the Boltzmann machine (figure l(b)) E much larger than 
that of the analogue neural network (figure l(a)). This implies that the Boltzmann 
machine possesses a much larger population of metastable states around the spin 
glass states (which is a severe obstacle to memory retrieval) than the analogue neural 
network does. This marked difference is commonly observed when the values of (I 
and p are not very large and the models are meaningful practical applications for 
memory machines. It is expected from naive inspection that both models will coincide 
with the Ising-spin Hopfield neural network in the limit p -t 03, the population of 
the spin glass metastable states of the analogue network also becomes larger and the 
difference between the two models becomes smaller as p increases (figure 2). 

'RI see the changes in the population of the spurious metastable states of the two 
models in the a-p parameter space, we calculated the total densities of the metastable 
states n, = /dmn,,(m,a,p) = e x p [ N G , ( a , P ) ]  and plotted l o g l , G t ( a , P )  in 
figure 3. (Region p < 1 is of no interest since we know, from the thermodynamic 
calculation, that no retrieval occurs in such a region.) Since n, is mainly comprised 
from the spin glass metastable states, figure 3 shows that there exist parameter regions 
where the density of such a metastable state suddenly drops for the analogue neural 
network while, for the Boltzmann machine, the change is gradual over the whole 
parameter space. 

It is noted, however, that there exists a large-P region where the total density 
for the analogue network becomes larger than that for the Boltzmann machine. lk. 
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Flpre  2 G profiles tor the analogue neural network (a )  and the Bolemann machine 
(b )  wilh the parameters o = 0.09 and p = 4.5. I h e  population of the spin glass 
metastable stales in the analogue networl: is Seen to tc considerably increased for such 
a value of p. 

I .  . -. 
Figure 3. The total density of the metaslable slales G < ( m , a , p )  = In(Jdm 
n , , ( m , a ,  0))I.V for the analogue neural network (0) and the Boltrmann machine 
(b). We only show the m u l l s  for p > 1 s i n e  othenviw there are no revieval slats.  
In the analogue neural network, the ppulation of lhe melaslable slales is drastically 
reduced lor small p. 

boundary separating the region in the a-@-' plane is displayed by the chain curve 
in figure 4. This can be clearly seen for the densities of the metastable states in the 
spin glass h i t  a -+ 03 of both models. In fact we found that the a - m limit 
of equation (28) yields the U = 0 solution of Thkayama and Nemoto (1990) for the 
spin glass models which, for y = 1, is just the Bray and Moore's solution (see the 
appendix). It was shown by Ikayama and Nemoto that the presence of the Onsager 
reaction term in the TAP equation reduces the number of metastable states (Waugh 
et al 1990). 

We found that the G profile around m 2 0 is unchanged as y is wried so long 
as y is not very close to unity. Figure 5 shows the G profile for an imaginary neural 
network with y = 0.95 with the same values for a and p as those used in. figure l(a). 
As mentioned earlier, the peak of the spin glass type metastable states around m E 0 
is identical to the corresponding one in figure l ( a )  for the analogue neural network 



n.on O.US0 0.100 0.138 
U 

Qigun 4 Storage capacities a1 the analogue nework and the Bolemann machine 
and n,(~olrlmmn) = nr,m.l.au., line. The full curve stands for rhe uitical storage 
rapacity d the analogue nework (Shiino and Fukai 1990) while the broken CUM lor the 
Bolmann machine ( b i t  a ol 1985). Both c u m  are obtained by replica calculation. 
In the region atwe the chain CUN$ the dens@ Ot (he metasrsb(e sfales ir smaller for 
the analogue network than for the Bolmann machine. ?)IUS the analogue netv~R will 
shibit htcer peiformanfcs in mml of the region relevant to pracrical uses of t h a  
neural network models. 

although the other WO peaks are, as iI naively expected from the value of y, almost 
identical to the corresponding ones in figure l(b) for the Boltzmann machine. 

G 

10' t I 

*re 5. l k  G pmfile far an imaginaly neural nelwork defined iy 7 = 0.95. The 
values of 01 and p are the same as those wed in figure I (a = 0.09 and B = 3). 'Re 
peak of the spin glass metastable stalcs Rmains almm unchanged (mm uta( plotted for 
y = 0 while the @her NO peaks are almost identical to thaxe plotlod for y = 1. 

In figure 6 we show G profiles of the analogue nerwork for large  lues of p. The 
profiles for the Boltzmann machine with large p were found to be almost the same 
as those of the analogue network within numerical calculations. The populations 
ot the three types of metastable state increase as the analogue gain js inneased 
and the intermediate metastable state iI absorbed by the broad peak of the spin g l w  
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Flgure 6. me G profiler for the analogue neural networks with (a) 8 = 100 and (b) 
8 = 10 000 when c( = 0.113 which was found by Gadner (1986) as the critical storage 
capadly of the delerminislic [sing-spin neural netwok We see that the intermediate 
melastable states are absorkd by the broad peak of the spin @ a s  memtable stales 
at sulficiently large values of 8. me profiles for the Bollzmann machine with large p 
were found to k almost the same as l h m  of lhe analogue network within numerical 
calculations. 

metastable states at sufficiently large values of 0. After absorption of the intermediate 
peak, the gap separating the remaining two peaks corresponding to the re t r ied  and 
the spin glass metastable states becomes narrower as the analogue gain is increased 
further until it finally disappears at p -+ 03. 

The disappearance of the separation between the two kinds of metastable state 
with increasing a was adopted by Gardner (19%) as a criterion for estimating the 
critical storage capacity (a, = 0.113) for the deterministic Ising-spin neural network 
when calculating the number of metastable states. When, on the other hand, the 
d u e  of p for the analogue neural network or the Boltzmann machine is not so 
large, the behaviour of the change in the G profile with increasing a differs from 
that for sufficiently large p cases: we observe that, as a increases, the two mks 
of the retrieval and intermediate metastable states approach one another untii they 
tinally merge and become negative-valued. Accordingly the critical storage capacities 
of the networks should be given by the d u e s  of a at which the disappearance of the 
retrieval states takes place. In fact, for both networks the critical storage capacities 
so obtained in the metastable state distribution analysis were found to coincide with 
those determined in the thermodynamic analysis based on the replica symmetric 
theory, which are shown in figure 4 ( h i t  et al (1985) for the Boltzmann machine 
and Shuno and h k a i  (1990) for the analogue network). 

5. Discussion and concluding remarks 

WP h2Ke m!!rlnc!erl mmprztive st.c!ie-s of !!!e ana!ng.e !!e...! !!eR?erl, mi th.e 
Boltzmann machine by estimating the densities of the metastable states. Our analysis 
revealed the remarkable fact that the population of the spurious states in the analogue 
neural network is significantly less than that in the Boltzmann machine for parameter 
ranges of practical importance with respect to storage level and analogue gain or 
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temperature. The key role in discriminating the two types of neural network is 
played by the Onsager reaction term of the spin glass theory: for p not so large, the 
absence of the Onsager reaction term in the TAP equation makes the metastable state 
density around the spin glass states significantly small (nt(Bo,tsmann) > n, ana,ogue)) 
while for large p, the situation is reversed (nt(analogue) > n,(Bo,tzmann) ). W e L e  also 
made it clear that the spin glass limit a - 00 of the metastable state densities for the 
Boltmann machine and the analogue neural network yields solutions corresponding 
to Bray and Moore’s (1980) and “kayama and Nemoto’s (1990), respectively. 

The difference found theoretically in the present paper for the spurious-state dis- 
tributions of the two types of neural network should be seen in practical applications 
when the number of neurons exceeds several hundreds or thousands, depending on 
the values used for a and p. It is necessary, however, to clarify the effect of finite size 
on the spurious-state distributions as well as basins of attraction of the two types of 

network performances. 
Finally we comment on the p - co limit of the G profiles of the analogue 

network and Boltzmann machine. As shown in a previous paper (Fukai and Shiino 
lW), it is easy to take the p -+ 00 limit of equations (28) and (29) for the analogue 
network to recover Gardner’s result. By contrast, the Onsager reaction term of the 
Boltzmann machine makes rigorous analysis of equations (28) and (29) tcm mmpli- 
cated to see whether or not it is still effective in the p + co limit However, we have 
found numerically that the Onsager reaction term hardly affects the spurious-state 
distribution of neural networks with sufficiently large p.  

T Fukni and M Shiino 
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Appendix. Spin glass limit of the density distribution 

Setting = fip in equation (29). we derive the spin glass limit (I + 00 of equa- 
tion (29) with P representing the inverse temperature of the corresponding spin glass 
system. We first note 

Changing variables 

A =  - ( c - a - f i p ~ ( l - A ) )  P 
6 

(Al! 

2 b =  aq 

a = - A  
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and setting 

A = q +  x / d Z  
we rewrite equation (29) to obtain in the limit a - 00 

with 

(-49 
Since the saddle-point equation aC/& = 0 yields 

2 = - 2 q  P y ( l - q ) + -  ( "> P 

the function G in the spin glass limit with the inverse temperature B determined 
by 

1 
~ ~ ~ ~ ~ 2 - ~ 2 ~ - " ~ - ~ [ R ~ A ~ ~ ~ - " ~ ~ l "  '1 ,\- I Y / \ ' - Y / T r . l L .  1 (A? 

2PZ 

We now see that G with y = 1 is just what Bray and Moore (1980) obtained for 
the TAP mean-field equation from the-Sherrington and Kirkpatrick (1975) spin glass 
model. 
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